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Kernel canonical-correlation Granger causality for multiple time series
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Canonical-correlation analysis as a multivariate statistical technique has been applied to multivariate Granger
causality analysis to infer information flow in complex systems. It shows unique appeal and great superiority
over the traditional vector autoregressive method, due to the simplified procedure that detects causal interaction
between multiple time series, and the avoidance of potential model estimation problems. However, it is limited to
the linear case. Here, we extend the framework of canonical correlation to include the estimation of multivariate
nonlinear Granger causality for drawing inference about directed interaction. Its feasibility and effectiveness are
verified on simulated data.
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I. INTRODUCTION

Modeling and estimating the interactions in dynamical
systems is a key question in neuroscience, engineering, and
other fields. An efficient and elegant method to understand this
kind of system, rooted in graph theory and statistical physics is
to draw a map representing the network of the system, on the
scale of a subsystem [1–3]. The different scale structures may
lead to different properties, and thus to different corresponding
patterns of dynamic interaction [4,5].

Granger causality considers that a signal yt causes another
signal xt , if xt could be predicted better when taking into
account the past of yt than by not doing so, for multivariate
Granger causality other relevant information being used in
either case [6]. Multivariate kernel causality generalizes linear
Granger causality to the nonlinear case [7]. It has been proved
that multivariate Granger causality is an effective and powerful
tool to detect the information transfer between the nodes of
a complex system [6,8,9]. Many advanced and mathemati-
cally complex techniques have been proposed to statistically
characterize Granger causality [10]. Cross correlation is a
simple way to detect directional influence, but is limited
to the linear and univariate case [11]. Canonical-correlation
analysis, which is the generalization of the Pearson correlation
(zero-lag cross correlation), is a multivariate statistics method
for measuring associations between two sets of variables. It
has been successfully applied in Granger causality analysis
[12,13], whereas only limited to the linear case (although for
Gaussian variables such as those simulated in [12], it has been
proved that nonlinear analysis is not necessary since a Gaussian
autoregressive (AR) process is always linear [14]). On the
other hand, when we deal with brain imaging data, although
linear relationship is enough for functional connectivity in
resting-state functional magnetic resonance imaging [15], it
might not be sufficient for detecting effective connectivity,
and the extension to the nonlinear case could be in order. This
paper presents a different canonical-correlation algorithm for
multivariate nonlinear Granger causality analysis, and explores
directionality in some chaotic systems.
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II. KERNEL CANONICAL-CORRELATION GRANGER
CAUSALITY

First we give the formal definition for Granger causality
for multiple time series. Suppose that variables X , Y are
wide-sense stationary multivariate stochastic processes, {�t }
is the information set containing all the relevant information
available up to and including period t , and {�t } is the given
set of information including at least {X t ,Y t }. Y t is said to
cause X t+1 if F (X t+1|�t − Y t ) �= F (X t+1|�t ) [16], where
F (X t+1|Jt ) is the conditional distribution function of X t+1

given Jt , �t − Y t denotes the information except the values
taken by Y t . In practice, �t is impossible to be obtained so �t

is used in substitution. Accordingly, Y t is said to be a prima
facie cause of X t+1 with respect to �t . In the applications,
regression techniques and cross-correlation analysis are the
main tools to identify Granger causality flows [11,17], and
the standard test of Granger causality is based on the vector
autoregressive (VAR) model [18,19].

Consider the unrestricted multivariate autoregressive
model:

X t = [X t−past,Y t−past]
[
A1

B1

]
+ εt , (1)

where X t−past (X t−past = [X t−1, . . . ,X t−n, . . .]) and Y t−past

are the lag distributions of X t and Y t , respectively. The
widely accepted test of Granger causality is based on the
prediction error of the VAR model. When the vector Y causes
X in the Wiener-Granger sense, the coefficients B1 are jointly
significantly different from zero. As we know, correlation may
be interpreted as the square root of R2 of a linear regression
model, where R2 represents the variance of the response
variable which may be explained by the regressors [13,20],
so the correlation is associated with predictive power. By
some extensions [21], it could be proved that the partial
canonical correlation between X t and Y t−past identify the
Granger causality from Y to X .

In the next, we consider problems in the sample space.
Suppose we have N + m + 1 realization of the q1-dimensional
and q2-dimensional stochastic variables X t and Y t . We used
the following shorthand notations : ξ i = (X i , . . . ,X i+N−1)T ∈
�N×q1 , ζ i = (Y i , . . . ,Y i+N−1)T ∈ �N×q2 , ξ = (ξ 1, . . . ,ξm) ∈
�N×mq1 , x = ξm+1 ∈ �N×q1 , ζ = (ζ 1, . . . ,ζm) ∈ �N×mq2 ,
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γ = [ξ ,ζ ] ∈ �N×m(q1+q2). Let K 1 = ξξT , K 2 = γ γ T . In order
to center data in the feature space, we replace K i by K i −
m−1 j j ′Ki − m−1 K i j j ′ + m−2( j ′ K i j ) j j ′ (i = 1,2), where
j = (1, . . . ,1)T ∈ �N×1 [22]. In the following we assume
that the data in the feature space has been centered.
The matrices K i are always singular, as the effective ranks of
the matrix are much lower than their sizes because of the small
sample size and high-dimensional case [23]. Here we convert
the high-dimensional feature space to reduced dimensional
subspace, in the premise of not losing any valid information
of primitive samples [23]. Let P = ∑m

i=1 υ iυ
T
i , where υ i are

the orthogonal eigenvectors of K 1 with nonzero eigenvalue.
Moreover, y = (I − P )x is the prediction error vector of
linear regression of x versus ξ , the prediction error defined
as εx = | y|2F (where ||·||F is the Frobenius norm). Using both
ξ and ζ to predict x, the prediction error is now εxy . Let {τ }α
consist of standard orthogonal eigenvectors with nonvanishing
eigenvalue of the matrix K = (I − P )K 2(I − P ) [24]. Without
loss of generality we assume that each τ α has zero mean. We
have εxy = εx − ∑

i r
2
i (where ri is the Pearson’s correlation

coefficient of each column of x and τ i), and the variance of
residual-based linear Granger causality index reads [24]

δ(Y → X) = 1 − εxy · ε−1
x = ‖ y‖−2

F ·
∑

i
r2
i . (2)

Furthermore, the basis {τ }α is a maximal linearly indepen-
dent set of the column space of ζ partialing out the effect
of ξ (the sample representation of Y t−past partialing out the
effect of X t−past), and y is the sample representation of X t

partialing out the effect of X t−past. Then a correlation-based
linear Granger causality index can be defined as

CCA(Y → X) = canoncorr( y,τ ) (3)

where canoncorr is a defined MATLAB function,
which denotes canonical-correlation analysis (CCA), i.e.,
canoncorr( y,τ ) = argmaxα,βρ = α′ y′τβ · √

α′ y′yαβ ′τ ′τβ,
which could be simply solved by linear algebra techniques.
Kernel CCA (KCCA) uses the “kernel trick” to project the data
into a higher dimensional feature space [22], which provides
a convenient way for generalization of the linear CCA
(LCCA). As described for the linear case, the kernel Granger
causality [24] could be implemented along the same lines,
but K i(i = 1,2) should be replaced by the corresponding
Gram matrix K 1 = κ(γ ,γ ), K 2 = κ(ξ ,ξ ). However, bivariate

FIG. 1. (Color online) Schematic plot for the simulation random
vector model. The upper-left frame demonstrates the selective causal
relationship of the variables in Eq. (4). The remains denote the
decomposed frames of the upper-left frame.

FIG. 2. (Color online) Simulation results of bivariate and multi-
variate KCCA Granger causality analyses for random vector model.
IP kernel with degree of 2 and Gaussian with σ = 20 were considered.
(a) the analysis result of multivariate KCCA Granger causality for all
pairs of maps. (b) the analysis result of bivariate and multivariate
KCCA Granger causality among combinations.

Granger causality (here information set �t = {X t ,Y t }) is a
prima facie causality, which may vary when to �t we add
additional information which could influence X t or Y t or
both. Geweke proposed that the conditional Granger causality
would overcome the spurious causalities [25], caused by delay
or indirect influence through a third series. Accordingly, we
plan here to extend the bivariate KCCA Granger causality to
the multivariate case. First, let x = (Xm+1, . . . ,Xm+N )T , then
replace X t by (XT

t ,ZT
t )T , with multivariate Z consisting of

other measured variables; the remaining step is same as the
bivariate case.

In the following, we consider two kinds of kernels:
the inhomogeneous polynomial (IP) and the Gaussian
kernel. The IP kernel of degree d is κd (X,Y ) = (1 +
XTY )d , and the Gaussian kernel is defined as κσ (X,Y ) =
exp[−(

√
2σ )−2‖X − Y ||2].

III. APPLICATION TO SIMULATIONS

A. Toy model

In order to verify the feasibility and effectiveness of the
proposed method, we applied it on a random vector model
first, which associated the following equations:

x1(t) = −0.8x1(t − 1) + 0.25
√

2x2(t − 2) + 0.2τ1(t),

x2(t) = 0.75x1(t − 1)[1 − x2(t − 2)] + 0.3τ2(t),

y1(t) = −0.4e−y2
1(t−1) + 0.95z(t − 1)2 + 0.2τ3(t), (4)

y2(t) = −0.75y1(t − 1)2 + 0.5y2(t − 1) + 0.4τ4(t),

z(t) = 0.3 tan[x1(t − 1)] − 0.8 cos[x2(t − 1)] + 0.2τ5(t),

where the τ ’s are zero-mean uncorrelated Gaussian white noise
processes with unit variances. Assuming no prior knowledge of
the above equation, the model is simulated to generate a data set
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of 500 realizations. Granger causality analysis was performed
on the simulated data, and the lag order was determined by
the Bayesian information criterion (BIC). We define the group
set as the following combination: X = {x1,x2}, Y = {y1,y2},
xz = {x1,x2,z}, yz = {y1,y2,z}. Since there are many ways
in which x1, x2, y1, y2, and z can be combined, we have
chosen some selective architectures (see Fig. 1). We repeated
the simulation 50 times with random τ ’s to generate a null
distribution. The result is displayed in Fig. 2. We found that
both the bivariate and multivariate KCCA Granger causality
could detect the correct causality flow well, but the bivariate
method failed to distinguish the indirect influences X → Y ,
which were actually mediated by z, while multivariate KCCA
Granger causality analysis recognizes it to be nonsignificant.
Besides, the causal influence X → yz is stronger than x1 and
x2 causal effect on yz, respectively. It indicates that the group
effect is different from the individual effect [26,27].

B. Rössler attractors

As another simulated example, we apply the proposed
method to the Rössler system. The Rössler equations are
given by

ẋ1 = −y1 − z1,

ẏ1 = x1 + ay1,

ż1 = b + z1(x1 − c),
ẋ2 = −y2 − z2 + dx1,

ẏ2 = x2 + ay2,

ż2 = b + z2(x2 − c)

with b = 2, c = 4, and d = 0.05; let x = {x1,x2}, y = {y1,y2},
and z = {z1,z2}. For a = 0.398 this system exhibits broadband
chaos, and for a = 0.3909 it exhibits period 6 behavior [28].
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FIG. 3. (Color online) Plots of the trajectory Rössler system for
values b = 2, c = 4, varied a, and analysis result of multivariate
KCCA Granger causality between all pairs of maps in {x, y,z}. Here
a = 0.398,0.3909, L = 870, IP kernel with d = 2, m = 2, is used.

For these values of a the data were simulated using the Runge-
Kutta method (we used ode45 function in MATLAB) with L

integration steps. Multivariate Gaussian white noise is added
to the system, and the noise level nl is defined as the noise
standard deviation divided by the standard deviation of the
noise-free time series. Here we control nl = 0.1,0.15,0.2, L =
870. We evaluated multivariate KCCA Granger causality using
IP kernel d = 2, and fixed lag order 2. The results are displayed
in Fig. 3. It reveals that z → y,y → z are not significant for
the above two values of a under 1% significance level, but are
unstable or even false to recognize y → z as a spurious causal
connection for larger L(such as 1000). The result is affected
by the noise level; as denoted in [24,29], the detecting ability
of causal relation is associated with synchronized state, which
is always affected by noise.

C. Coupled chaotic maps

Finally, let us consider a coupled map lattice of 20 nodes,
with equations, for i = 1, . . . ,20,

xj,t =
(

1 −
∑n

i=1
cji

) (
1 − 1.8x2

j,t−1

)

+
∑n

i=1
cji

(
1 − 1.8x2

i,t−1

) + 0.01τj,t ,

cj,irepresents the coupling i → j . We consider a network
consisting of two community structures (C1 and C2), which
displays a small-world architecture in the intracommunity.
The connectivity scheme is displayed in Fig. 4 (above). We
set the value of cji equal to 0.01, 0.03, 0.05, and generate
three numbers of realization: L =1500, 2000, and 2500. Then
we evaluated multivariate KCCA Granger causality between

C2C1

C
C

A

C2 → C1,L = 1500
C2 → C1,L = 2000
C2 → C1,L = 2500
C1 → C2,L = 1500
C1 → C2,L = 2000
C1 → C2,L = 2500

0.01 0.03 0.05
0

0.5

1

Cji

FIG. 4. (Color online) Left: schematic plot for the two community
interaction. Right: the analysis result of multivariate KCCA Granger
causality with Gaussian kernel, m = 1.
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the two communities using a Gaussian kernel with adap-
tive width σ = max aij [for κσ (X,Y ), where matrix (aij ) =
|(X − Y )T (X − Y )|], and fixed lag order 1. The analysis result
is displayed in Fig. 4 (below). We found a significant causal
influence from C1 to C2.

IV. CONCLUSIONS

In summary, we present a canonical-correlation algorithm
for multivariate nonlinear Granger causality analysis based
on reproducing kernel Hilbert spaces. Dimension reduction
of kernel matrix is added to the algorithm in order to
overcome the common problem of the redundancy in the
kernel matrix, which enhances its robustness. We expect the

proposed approach to be a simply statistical method to assess
the causal relations and could lead to deeper understanding of
the underlying information flow under a different scale level
in the complex systems, which could be paralleled to extend
to other corresponding domains.
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