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Multiscale Causal Connectivity Analysis by
Canonical Correlation: Theory and Application

to Epileptic Brain
Guo Rong Wu, Fuyong Chen, Dezhi Kang, Xiangyang Zhang, Daniele Marinazzo∗, and Huafu Chen∗

Abstract—Multivariate Granger causality is a well-established
approach for inferring information flow in complex systems, and
it is being increasingly applied to map brain connectivity. Tradi-
tional Granger causality is based on vector autoregressive (AR) or
mixed autoregressive moving average (ARMA) model, which are
potentially affected by errors in parameter estimation and may
be contaminated by zero-lag correlation, notably when modeling
neuroimaging data. To overcome this issue, we present here an
extended canonical correlation approach to measure multivariate
Granger causal interactions among time series. The procedure in-
cludes a reduced rank step for calculating canonical correlation
analysis (CCA), and extends the definition of causality including
instantaneous effects, thus avoiding the potential estimation prob-
lems of AR (or ARMA) models. We tested this approach on sim-
ulated data and confirmed its practical utility by exploring local
network connectivity at different scales in the epileptic brain ana-
lyzing scalp and depth-EEG data during an interictal period.

Index Terms—Canonical correlation analysis, depth-EEG, mul-
tivariate Granger causality.

I. INTRODUCTION

A FULL understanding of the brain network requires not
only an understanding of correlated relationships between

the separated neuronal populations but also an understanding of
changes in inter-regional interactions. Functional connectivity
investigates the connections between brain regions using mea-
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sures of statistical dependencies such as correlation or partial
correlation or mutual information. These measures are in gen-
eral nondirectional. Effective connectivity measures on the other
hand rely on model estimation, are in general directed, and have
become increasingly relevant in neuroimaging [1]–[3]. In re-
cent years, many methodological advances have been applied to
this type of connectivity analysis, including structural equation
modeling [4], dynamic causal models [5], and Granger causal-
ity (GC) [6]–[10]. The first two methods rely on anatomically
and physiologically based models, and their successful applica-
tion depends on the exact obeissance to these constraints [11].
On the other hand, Granger causality is a data-driven method,
first proposed and formalized by Granger [12]–[14]. GC relies
on temporal precedence (the cause occurs before the effect)
and is based on the notion of the improved predictability of
one signal when information about another one is added to the
model [12], [13]. GC is broadly used in neuroscience [7], [15].
In spite of the successes of Granger’s method, some key theoret-
ical problems remain unsolved. Previous approaches to detect
Granger causality, e.g., dynamic vector autoregressive (VAR),
sparse VAR, and nonlinear VAR have been suggested to ex-
tend the standard framework of VAR model based Granger
causality [16]. More recently, multivariate Granger causality
has been proved to be an effective and powerful tool to de-
tect information flow among different components in complex
systems [17]–[21], such as multivariate VAR, kernel Granger
causality [18], [22], canonical correlation [19], [20], and ker-
nel canonical correlation [23]. As the choice of an appropriate
order of VAR model is not trivial nor univocal, and may affect
the outcomes of the test [24], the aforementioned VAR-based
Granger causality tests could not be able to balance variance ac-
counted for against model complexity. Furthermore, it has been
proposed that the traditional multivariate Granger causality may
suffer the “leakage” of zero-lag correlation into the causal do-
main [25], [26]. It has been suggested that cross-correlation
and canonical correlation could overcome this potential estima-
tion problem [20], [27]. However, the cross-correlation method
is a univariate approach [27], whereas the approach based on
canonical correlation may be limited to Gaussian processes [20].
Partial canonical correlation [17], [21] could also be unsuccess-
ful in excluding instantaneous effects in traditional Granger
causality analysis. In order to overcome these issues, here we
present an extended canonical correlation approach for multi-
variate Granger causality analysis. The approach is first tested
on simulated data. Then we apply the proposed method in scalp-
EEG and depth-EEG data from an epileptic patient, and explore
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the pattern of effective connectivity at different scales during
interictal period.

II. METHOD

A. CCA Bivariate Granger Causality Analysis

Let {Ωt} be a set of information from an entire ensemble
of concurrent stochastic processes, and {�t} be a subset of
{Ωt} including at least the stochastic processes {Xt, Yt}. The
subscript indicates the time. If the model which uses information
from both Xt and Yt yields a better prediction of the future
values of X than the model which uses only information about
Xt , then this means that the series Y contains some information
about X which is not available elsewhere, and thus Y is said to
cause X [28]. In practice, we cannot deal with the complete set
Ωt , so �t is used in substitution. In the application, regression
techniques and cross-correlation are the main tool to identify
Granger causality flow, and the standard test of GC is based on
VAR model [13], [29].

Let us assume that the variables X and Y are wide-sense
stationary multivariate stochastic processes. Consider the pair
of multivariate autoregressive models [2], [13]–[15]

Xt =
∞∑

i=1

a1iXt−i + εt . (1)

Xt =
∞∑

i=1

a2iXt−i +
∞∑

j=1

b2iYt−j + ε′t . (2)

Then Yt Granger causes Xt , if |Σ(εt)| � |Σ(ε′t)|, that is, if
the generalized variance of the error from model (2) is statis-
tically smaller than the generalized variance of the error from
model (1) [30]. The standard test of GC is defined by the log-
arithm of residual ratio between the regression models (1) and
(2) [13], [30]. Theoretical autoregressive processes have infinite
model order, but we should estimate a number of lagged obser-
vations from empirical time series data. Akaike information cri-
terion [31], Bayesian information criterion [32], Hannan-Quinn
criterion [33], cross validation [34], [35], and other order selec-
tion criteria have been developed for the selection of order. Stan-
dard Granger causality only considers the lagged effects among
the time series, and neglects the instantaneous (not lagged) ef-
fects, which implies that any zero-lag correlation among the
time series is translated into a correlation among the model
residuals [13], [25], [26], [29]. Geweke introduced a transfor-
mation to the noise covariance to account for the instantaneous
correlation, which leads to a decomposition where the total inter-
dependence between x and y can be decomposed into “x drives
y”, “y drives x”, and instantaneous causality [36], [37]. To ad-
dress this distinction in the current framework, here we consider
the model including the instantaneous effects, and reformulate
(2) as follows [25]:

Xt =
∞∑

i=1

a2iXt−i +
∞∑

j=0

b2iYt−j + ε′′t

then,

X̃t = Xt − b20Yt =
∞∑

i=1

a2iXt−i +
∞∑

j=1

b2iYt−j + ε′′t

= [Xt−past , Yt−past ]
[

A1
B1

]
+ ε′′t . (3)

In the generalized multiple linear regression equation
(3), Xt−past (Xt−past = [Xt−1 , . . . , Xt−n , . . .]), and Yt−past

(Yt−past = [Yt−1 , . . . , Yt−n , . . .]) are the lagged distributions
of Xt and Yt, respectively. If B1 is statistically significant,
Yt Granger causes Xt ; furthermore, there is a significant cor-
relation between X̃t and Yt−past , partialing out the effect of
Xt−past .

Canonical correlation analysis (CCA) is a method of correlat-
ing linear relationships between two multidimensional variables
in feature space [38], [39]. In a sense, multiple linear regression
is a special case of canonical correlation analysis [40]. The re-
lationship between canonical correlation and Granger causality
in the case of Gaussian processes has been established in the
framework of information theory [19], [20]. Canonical correla-
tion based Granger causality has also been used to study gene
expression and functional magnetic resonance imaging (fMRI)
signals [17], [21]. Due to the small sample size and high di-
mensionality of the dataset, those studies were limited to the
information of one time point lag distribution [21]. Lagged val-
ues of the corresponding variables are taken into account in
order to diminish the risk caused by spurious regressions [41].
Information computed with an embedding dimension of only
one may be insufficient to avoid spurious correlations in ap-
plications where the instantaneous effect is strongly present.
To overcome these issues in the following, we present an ex-
tended canonical correlation approach for multivariate Granger
causality analysis.

Consider the random vector C = (X̂t , Ŷt−past) on H ⊆ �q ,
with the covariance matrix Σ = (Σij ) (where Σij (i, j = 1, 2)
denotes the partitioned matrix). We can assume without loss of
generality that each column contains values with zero-mean and
unit variance. Linear CCA seeks a pair of basis vectors α ∈ �q1

and β ∈ �q2 for the X̂t and Ŷt−past , such that the correlations
between X̂tα and Ŷt−pastβ are mutually maximized, namely, it
solves the following optimization problem:

ρ : = max
[α ;β ]∈�q 1 + q 2

αT Σ12β

subject to αT Σ11α = 1 and βT Σ22β = 1 (4)

which could be simply solved by linear algebra techniques
[38]. The canonical correlation coefficient is given by ρ =
(βT β)−1βT B1α. The value of ρ is in the interval [0, 1]. To
test the significance of the correlation Bartlett’s criterion, Roy’s
criterion [42], bootstrap method [43] can be employed. In most
of the applications the covariance matrices are singular, as the
effective ranks of matrix are much lower than their sizes due
to the small sample size and high-dimensional case. A com-
mon approach to deal with singular covariance matrices and to
control complexity is ridge-type regularization. Here, we use
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an approach which maps the high-dimensional feature space
onto a subspace with lower dimension, under the premise of
not losing any valid information from the original samples.
We assume that Σ11 is singular and Σ22 is nonsingular, and
υ1 , υ2 , . . . , υm (where m = rank(Σ11)) are its standard orthog-
onal eigenvectors corresponding to the nonvanishing eigenvalue
of Σ11 , let P = (υ1 , υ2 , . . . , υm ), and replace Σ11 and Σ12 by
Σ̃11 = PT Σ11P and Σ̃12 = PT Σ12 , respectively [44]. A simi-
lar approach is employed when both Σ11 and Σ22 are singular. It
has been proven that the value of canonical correlation does not
change when this dimension-reduction algorithm is applied [44].

In summary, the vector Y is said to cause X in linear Granger
if, for some t, canoncorr(X̃t , Yt−past |Xt−past) 
= 0, that is, if
the canonical correlation between X̃t and Yt−past , partialing out
the effect of Xt−past is different from zero. Here X̃t denotes
Xt once that the instantaneous effect of Yt has been partialed
out. We consider CCA(Y → X) as the strength of causal in-
fluence from Y to X , and we define causality from X to Y in a
symmetric fashion.

We now address instantaneous causality by CCA. According
to the previous definition of instantaneous causality [2], [11],
the vector X is said to instantaneously cause Y in Granger sense
if, for some t, canoncorr(Xt, Yt |[Xt−past , Yt−past ]) 
= 0, that
is, if canonical correlation between Xt and Yt , partialing out the
effect of Xt−past and Yt−past , is nonzero.

B. CCA Multivariate Granger Causality Analysis

When applied to multivariate systems, bivariate Granger
causality may detect spurious causalities due to the influence
of the remaining time series [7], [12]. Multivariate Granger
causality (MGC) was originally introduced by Geweke to solve
the problem of indirect causal interaction [7], [45], [46], that
is, causal interaction between two time series possibly influ-
enced by other time series. Several other algorithms to detect
multivariate causality in frequency domain have been devel-
oped, as (generalized) partial directed coherence and directed
transfer function; both of them have been extended to exclude
instantaneous effects [25], [26]. In the following, an extension
of CCA bivariate Granger causality to the multivariate case in
time domain is proposed. Let Z(t) = [z1(t), z2(t), . . . , zk (t)]
be k simultaneously recorded multiple time series, which can
be modeled by a traditional multivariate VAR process as fol-
lowing:

Z(t) =
∞∑

i=1

Ai0Zt−i + E0(t). (5)

Similarly, we consider the model which includes the instan-
taneous effects:

Z(t) =
∞∑

i=0

AiZt−i + E(t). (6)

Similarly to what we have demonstrated above, the
vector zi is said to cause zj in linear Granger sense
on information set Z if, for some t, canoncorr
({z̃j}t , {zi}t−past |[Zt−past\{zi}t−past ]) 
= 0 (canonical corre-
lation between {z̃j}t and {zi}t−past , partialing out the ef-

fect of Zt−past\{zi}t−past is nonzero, where {z̃j}t denotes
{zj}t partialing out the instantaneous effect of Zt\{zj}t ,
Zt−past\{zi}t−past denotes the information coming from data
other than the values in {zi}t−past). Repeating these steps for
all the values of i and j, the causality pattern in the dataset is
evaluated.

In short, we give the pseudocode for calculating CCA
multivariate Granger causality from multiple time series
zi ∈ �N ×p to zj ∈ �N ×q (we denote za = [za,1 , . . . , za,b ] ∈
�N ×b , zm+1:N

a = [zm+1:N
a,1 , . . . , zm+1:N

a,b ], z1:N −m
a =

[z1:N −m
a,1 , . . . , z1:N −m

a,b ], where za,h = [za,h(1), . . . , za,h(N)]T ,

zm+1:N
a,h = [za,h(m + 1), . . . , za,h(N)]T , z1:N −m

a,h = [za,h(1),
. . . , za,h(N − m)]T in matrix form):

1) Preprocess the data and get multiple time series
Z ∈ �N ×n . Without loss of generality, let Z =
[zi, zj , z3 , . . . , zk ].

2) Select the lag order m for Z by some criterion.
3) Let zr = [z3 , . . . , zk ] ∈ �N ×(n−p−q) , zri−c =

[zm+1:N
r , zm+1:N

i ], zrj−p = [z1:N −m
r , z1:N −m

j ], zj−c =
zm+1:N
j and zi−p = z1:N −m

i .
4) Remove influence of multiple lags. This could be achieved

in two ways:
i) First, estimate conditional covariance matrix
Σz̃ j −c z̃j −c

= Σzj −c zj −c |zr i−c
, then estimate conditional co-

variance matrix Σz̃ j −c zi−p |zr j −p
.

ii) Regress out the influence of zri−c on zj−c , then get the
residual vector z̃j−c , partialing out the influence of zrj−p

on z̃j−c and zi−p , then get the residual vectors ẑj−c and
ẑi−p .

5) If you choose step 4.i), calculate the square root
of maximum eigenvalue of matrix A = RRT (where
R = Σ−1/2

z̃ j −c z̃j −c |zr j −p
Σz̃ j −c zi−p |zr j −p

Σ−1/2
zi−p zi−p |zr j −p

), which
is CCA(zi → zj ). If the covariance matrix is singular,
we add a dimension reduction step following the strategy
proposed in Section II (A).
For step 4.ii), calculate the canonical correlation be-
tween ẑj−c and ẑi−p (i.e., CCA(zi → zj )) and the cor-
responding statistical significant level (for example using
MATLAB function canoncorr).

III. MATERIALS AND METHODS

A. Simulation Model 1

First, here we considered a AR(2) model:

x(t) = 0.952x(t − 2) + 0.4y(t − 2) + 0.5ε(t)

y(t) = 0.952y(t − 2) + 0.5x(t) + cξ(t) (7)

where ε(t), ξ(t) are zero-mean uncorrelated Gaussian white
noise processes with unit variances. We used various values
of noise amplitude c and various lengths N of the time series to
show how the two parameters affect the causality index. Then we
repeated the simulation 200 times with random values of ε and ξ
keeping c and N fixed in order to generate a null distribution (in
order to ensure reliability of the result and calculate the mean
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and variance of the causal strength). We evaluated four types of
GC with lag order 2: Geweke’s GC (FY →X = ln |Σ(εt )|

|Σ(ε ′
t )| [45]),

improved Geweke’s GC (FY →X = ln |Σ(εt )|
|Σ(ε ′′

t )| , based on (1) and

(3), CCA Standard GC (without excluding the instantaneous
effect, i.e., CCA(Y → X) = canoncorr(Xt, Yt−past |Xt−past)
[21]), CCA GC (which excludes the instantaneous effect, i.e.,
CCA(Y → X) = canoncorr(X̃t , Yt−past |Xt−past)).

B. Simulation Model 2

As a further test for the proposed approach, we considered a
random vector model as following:

x1(t) = 0.8x1(t − 1) − 0.3x1(t − 2) + 0.5x2(t − 1) + ε1(t)

x2(t) = 0.4x2(t − 2) + 1.2−0.5x1 (t−2)
1+e−3 x 1 ( t−2 ) + ε2(t)

y1(t) = −0.5y1(t − 1) + 0.75z(t − 2) + ε3(t)

y2(t) = 0.5y1(t − 2) + 0.7y2(t − 3) + ε4(t)

z(t) = 0.75x1(t − 2) − 0.5x2(t − 2) + 0.25
√

2z(t − 2)

+ ε5(t) (8)

where ε’s are unit variance Gaussian noise as above. Using the
model simulation we generated a dataset of 500 time points.
Then we evaluated the element-wise conditional causality for
all pairs of maps. The lag order (= 3) was determined by
leave-one-out cross-validation (LOO-CV). We define block sets
as following combination: X = {x1 , x2}, Y = {y1 , y2}, xz =
{x1 , x2 , z}, yz = {y1 , y2 , z}. From the many ways in which
x1 , x2 , y1 , y2 , and z can be combined, we have chosen some
typical blockwise architectures. In (8), the block-to-block causal
relationships: X → Y , Y → X , xz → Y , Y → xz, X → yz,
and yz → X , and the block to individual or individual to block
causal interaction: X → z, z → X , z → Y , Y → z, x1 → yz,
yz → x1 , x2 → yz, yz → x2 were evaluated by CCA bivariate
and multivariate Granger causality test. We repeated the simu-
lation 200 times with a random ε to generate a null distribution.

C. Application to Scalp-EEG and Depth-EEG in Epilepsy

Mesial temporal lobe epilepsy (mTLE) is the most common
type of human medically intractable epilepsy. Surgical removal
of brain tissue involved in seizure generation (epileptogenic
zone, EZ) is at the moment the most effective treatment [47].
Correct identification of the epileptic focus that will be removed
represents a crucial step for a successful outcome. To this pur-
pose, both scalp-EEG and depth-EEG are recorded in the presur-
gical phase to investigate spatiotemporal dynamics of ictal and
interictal states. Alongside the individuation of the focus and
the study of how seizures initiate, propagate, and terminate,
studying the dynamic relationships between different brain re-
gions plays an important role. Several studies have analyzed
EEG during seizures with different methods in order to localize
the focus [48]–[50]. In this study, we concentrate on the inter-
ictal phase [51]–[53], looking for signs of seizure susceptibility
and increased unilateral influence between hemispheres. Indeed,
findings from brain-imaging studies in epilepsy have shown fea-

Fig. 1. Selection of interictal data. Plot obtained using EEGLAB.

tures which are not related to specific focal region dysfunction
but to wider network dysfunctions [54]. Furthermore, the study
of network dynamics can help to evaluate possible consequences
of the surgery on subsequent brain functionality, once that the
patient will be hopefully seizure-free.

We applied the proposed approach to test connectivity in si-
multaneously recorded scalp-EEG and depth-EEG data from
one patient (female, 20 years) with medically refractory mesial
temporal lobe epilepsy. Written Informed Consent was obtained
from the participant. This study was approved by the local med-
ical ethics committee at the First Affiliated Hospital, Fujian
Medical University. The patient subsequently underwent surgi-
cal resection of the putative epileptogenic zone, is now seizure
free, one year after surgery. The epileptogenic foci had been
localized and evaluated by:

1) Structural MRI evidence of reduced volume of the right
hippocampus relatively to the average normal Chinese
hippocampus volume measured in coronal T1 images.

2) Increase in T2 fluid-attenuated inverted recovery signal in
bilateral hippocampus, indicating that here was no other
MRI abnormality than the hippocampal sclerosis.

3) EEG evidence: The patient showed spike discharges on
right frontal lobe and bilateral sphenoidal electrodes dur-
ing interictal period. The slow waves originated from the
left sphenoidal electrode and propagated to the right sphe-
noidal electrode; frontal and temporal lobes showed spike
discharges during ictal period.

Intracortical depth electrodes (interelectrode distance:
10 mm) were placed on left and right hippocampal head, body,
and posterior. For this patient, an anterior temporal lobec-
tomy was performed. The left anterior temporal lobe, 4.5 cm
from the temporal pole, the left amygdala, the hippocampal
body and head, and the parahhippocampal gyrus were resected.
Scalp EEG and depth-EEG were obtained at a sampling rate of
128 Hz. Here we chose an interictal scalp-EEG and depth-EEG
data for further analysis; the data are displayed in Fig. 1.For
the scalp-EEG data, we only considered the Gamma rhythm
wave (30 HZ high-pass filter) [47], which is stationary. First,
we performed a CCA multivariate Granger causality analysis
between each possible pairs of Gamma rhythm scalp-EEG sig-
nals [the lag is 8 determined by LOO-CV (Fig. 2)]. Finally,
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Fig. 2. LOO-CV plots for EEG data.

Fig. 3. (Left) Gamma rhythm causal connectivity map obtained by means of
CCA multivariate Granger causality. Here, each small circle shows the causal
flow (difference between outgoing and ingoing causalities) from each channel
to all other channels. Positive values (red) indicate sources, and negative values
(blue) indicate sinks of information. All the nonzero values have passed the
significance test with a threshold of q = 0.05, FDR corrected. (Right) The
corresponding topographic map of the electrodes.

we analyzed the time-invariant and dynamic (we use moving
windows with 1.25 s length) CCA bivariate Granger causality
between two modules of the depth-EEG data [first-order differ-
ences were performed, in order to get a stationary data, the lag
is 4 for time-invariant (Fig. 2) and 2 for dynamic case, which
were determined by LOO-CV]. The LOO-CV plots for EEG
data with time-invariant case are presented in Fig. 2, and the
analysis results are presented in Fig. 3.

IV. RESULTS AND DISCUSSION

A. Simulation Model 1

For simulation model 1, the causal interactions between x
and y are displayed in Figs. 4 and 5 for different noise levels
c ∈ [0.1, 1.5], different length of time series and lag distribu-
tions, respectively. The nonzero values are those that pass the
significance test at a threshold of 0.05, corrected by FDR [55].

Fig. 4. Four types of Granger causal influences between simulated time series
for increasing the noise levels. Left: Geweke’s GC (top) and CCA Standard
GC (bottom). Right: Improved Geweke’s GC (top) and CCA GC (bottom). All
nonzero values have passed the significance test at a confidence level of 0.05,
corrected by FDR.

Fig. 5. Strength of causal influence affected by two factors: The length of the
considered time series and the order of lag distribution.

Fig. 4 shows that traditional GC suffers from instantaneous
causality, and even the improved Geweke’s GC sometimes is
unable to avoid it, while the proposed approach eliminates this
problem. it is evident from Fig. 5 that Granger causal influence
y → x significantly increases when we change the model order
from 1 to 2, and then it stays more stable for bigger model or-
ders, which indicates the risk caused by spurious regressions. It
shows that the analysis results of Granger causality are stable
when there are sufficient amount of realizations.

B. Simulation Model 2

For simulation model 2, the schematic connectivity plot for
the simulation is displayed in Fig. 6. The results of bivari-
ate and multivariate Granger causality analysis are displayed
in the Figs. 7 and 8, respectively. Comparing the network di-
agrams for the two cases we can see that bivariate analysis
yields connections that are the result of direct causal influences
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Fig. 6. Possible connectivities for the random vector model. Top left: The se-
lective causal relationships between the variables in (8). The remaining diagrams
show the patterns obtained by decomposing them.

Fig. 7. CCA multivariate Granger causality values for all pairs of maps in (8).
The light blue surface contains the nonsignificant values.

Fig. 8. CCA bivariate and multivariate Granger causality values among combi-
nations of the variables of (8). The light blue surface contains the nonsignificant
values.

(e.g., X → z) and indirect causal influences (e.g., X → Y ) .
We further performed a CCA multivariate Granger causality
analysis. The results demonstrate that CCA multivariate Granger
causality better matches the original structural connectivity. It
is also worth noting that causal influence x1 → x2 is nonlin-
ear, but it still can be detected by a linear test. When we group
the variables, we observe that the group effect is different from
the individual effect: for instance, the causal influence X → yz
is stronger than the causal effect of x1 and x2 on yz taken
separately. This is in line with the redundancy effect described
in [56].

C. Scalp-EEG and Depth-EEG Data

For the scalp-EEG (Fig. 3), it is shown that there is informa-
tion flow transfer between two hemispheres, notably a higher
information transfer from left to right hemisphere in the causal-
ity connectivity map [in particular, there is a significant causal
influence from left sphenoidal electrode (SPh1) to the right one
(SPh2)]. The time-invariant and dynamic causal analysis result

Fig. 9. Causal connectivity between modules. (Top) The intracranial electrode
position (red solid spheres) is reconstructed by fusion technique of CT and MRI
brain images. (Bottom) Information flow (outgoing minus ingoing causal rela-
tionships, i.e., those who have passed the significance test with q = 0.05, FDR
corrected) for time-invariant and dynamic CCA bivariate GC analysis. A: Dy-
namic information flow from left block electrodes to right block electrodes. B:
Time-invariant information flow from left block electrodes to right block elec-
trodes. C: Dynamic information flow from single electrode to block electrodes.
D: Time-invariant information flow from single electrode to block electrodes.
E: The last row (all negative values) in C indicates that electrode 8 receives
information from left block electrodes.

of simultaneously recorded depth-EEG confirms the analysis
result of scalp EEG (Fig. 9). We find that the causal influence
from the left module of four electrodes to the right module of
four electrodes is more elevated than the one in the opposite
direction, in particular electrodes 2 and 3 act as sources of in-
formation to right block electrodes, and electrodes 7 and 8 act
as sinks of information coming from left block electrodes. This
evidence of a preferred coupling direction, both from scalp and
depth EEG, could add useful information on the epileptogenic
zone, even in absence of seizures, as pointed out in [53]. Further-
more, this methodology provides a map of the brain connectivity
in the interictal phase, which could possibly be useful to make
predictions on the network disruption and reorganization after
surgery [57], [58].
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D. Statistical Inference

Several approaches are used to test the significance of VAR-
based Granger causality: F-test, χ2-test [2], [45], and the boot-
strap method [6], [43]. In the present study, as the algorithm
for Granger causality analysis is based on the canonical cor-
relation, many validated methods to test the statistical signif-
icance of canonical correlation could also be employed. To
test for statistical significance of canonical correlation coef-
ficients, several asymptotic tests could be used, such as F-
approximations of Wilks’ Lambda, the Hotelling-Lawley Trace,
the Pillai-Bartlett Trace, or of Roy’s Largest Root [59], and a
Monte Carlo method [43]. Here, we use the Lawley’s modifica-
tion to Bartlett’s chi-squared statistic.

E. Influence of Order, Length and Dimension of Time Series on
Granger Causality

VAR-based Granger causality analysis must balance model
order and complexity, and the corresponding estimation of AR
model coefficients [2]. The lag order of the model is the main is-
sue in the proposed approach, but we avoid potential parameter
estimation problems that often arise multicollinearity [19], [20].
Furthermore, small sample size and high dimensionality are
a common problem in real data (e.g., fMRI), which adds to
the problem of lag order. To deal with this problem, we map
the high-dimensional feature space onto a reduced dimensional
subspace, without losing any valid information on the original
samples. Nonetheless, the lag order and the number of multi-
variate time series (when combining the element for blockwise
analysis) should always be chosen with caution. In this paper, we
used cross validation based on Leave-One-Out error [34], [35],
which uses all but a single data point of the original sample for
training the model, and is defined as the averaged error:

errLOO =
1
n

∑n

i=1
l(yi, f(xi |D\Di)) (9)

where D = {(x1 , y1), . . . , (xn , yn )} represents the original
sample set of n labeled, Di = (xi, yi), f(xi |D\Di) denotes the
model prediction at the instance xi , and l is 0/1-loss function
(l(a, b) = 0, when a = b, otherwise, l(a, b) = 1).

F. Blockwise Causal Interaction

Detection of elementwise causal interaction is a popular
method in the study of complex systems. Recently, more and
more attention has been devoted to explore multidimensional
signals using blockwise causal interactions [21], [45], [60], [61],
[62]. In the interaction between several elements of a system we
could have synergy, redundancy, and independence [56]. There
are various ways to combine series into communities, using
for example information from the geometric location, or some
artificial designation. On the other hand, blockwise causal anal-
ysis may be used first to identify important system interactions,
and then elementwise causal analysis can be used to further as-
sess the contributions of specific subsystem within and between
those systems [62]. The analysis of interactions at different
scales brings a new insight on the interaction among complex
subsystems.

G. Limitations

Linear Granger causality tests are useful to uncover linear
and, in some particular case, even nonlinear causal relationships.
However, their power in revealing nonlinear causal relationships
can be low in many cases. Indeed, even if the dynamics of each
individual element is nonlinear, it is still difficult to determine
whether the corresponding collective dynamic could result in
nonlinear relationships. Granger causality analysis can be per-
formed in the time-domain as well as in the frequency-domain.
The proposed approach is purely a time domain test; if one
is interested to frequency domain results in this framework, a
possible solution is to preprocess the data, for example filtering
them (although this might bring to some other issues [63]). The
framework of Granger causality assumes stationarity of signals,
thus Granger causality estimates are prone to lose validity when
signals violate stationarity assumptions. Furthermore, the pit-
falls of this approach considering the inevitable occurrence of
trial-to-trial variability of event-related potentials in both am-
plitudes and latencies have been pointed out [64].

V. CONCLUSION

CCA is a popular multivariate statistical method which is
extensively used to analyze time series data. In this work, we
proposed a novel canonical correlation algorithm for multivari-
ate Granger causality analysis, which greatly decreases compu-
tation complexity compared to parametric estimators. In order
to overcome common problems of singular in the covariance
matrix, reducing the dimension of covariance matrix is added
to the algorithm which makes the test more robust. We believe
that the proposed approach is a simple and yet powerful statis-
tical method able to assess causal relationships in multivariate
systems and to provide a deeper understanding of the underly-
ing information flow at several scales in complex networks in
general and brain networks in particular. Importantly, its appli-
cation could shed light on clinically relevant phenomena such
as epilepsy, as shown here.
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[14] K. Hlavácková-Schindler, M. Palus, M. Vejmelka, and J. Bhattacharya,
“Causality detection based on information-theoretic approaches in time
series analysis,” Phys. Reports, vol. 441, no. 1, pp. 1–46, 2007.

[15] A. J. Cadotte, T. B. DeMarse, T. H. Mareci, M. B. Parekh, S. S. Talathi,
D. U. Hwang, W. L. Ditto, M. Ding, and P. R. Carney, “Granger causality
relationships between local field potentials in an animal model of temporal
lobe epilepsy,” J. Neurosci. Methods, vol. 189, pp. 121–129, 2010.

[16] J. R. Sato, P. A. Morettin, P. R. Arantes, and E. Amaro Jr., “Wavelet
based time-varying vector autoregressive modelling,” Comput. Statist.
Data Anal., vol. 51, no. 12, pp. 5847–5866, 2007.

[17] A. Fujita, J. R. Sato, K. Kojima, L. R. Gomes, M. Nagasaki, M. C. Sogayar,
and S. Miyano, “Identification of Granger causality between gene sets,”
J. Bioinformat. Comput. Biol., vol. 8, no. 4, pp. 679–701, 2010.

[18] D. Marinazzo, M. Pellicoro, and S. Stramaglia, “Kernel method for non-
linear Granger causality,” Phys. Rev. Lett., vol. 100, no. 14, p. 144103,
2008.

[19] P. W. Otter, “Canonical correlation in multivariate time series analysis with
an application to one-year-ahead and multiyear-ahead macroeconomic
forecasting,” J. Business Econ. Statist., vol. 8, no. 4, pp. 453–457, 1990.

[20] P. W. Otter, “On Wiener-Granger causality, information and canonical
correlation,” Econ. Lett., vol. 35, no. 2, pp. 187–191, 1991.

[21] J. R. Sato, A. Fujita, E. F. Cardoso, C. E. Thomaz, M. J. Brammer, and
E. Amaro Jr., “Analyzing the connectivity between regions of interest:
An approach based on cluster Granger causality for fMRI data analysis,”
NeuroImage, vol. 52, pp. 1444–1455, 2010.

[22] D. Marinazzo, M. Pellicoro, and S. Stramaglia, “Kernel-Granger causality
and the analysis of dynamical networks,” Phys. Rev. E, vol. 77, no. 5,
p. 56215, 2008.

[23] G. Wu, X. Duan, W. Liao, Q. Gao, and H. Chen, “Kernel canonical-
correlation granger causality for multiple time series,” Phys. Rev. E,
vol. 83, no. 4, p. 041921, 2011.

[24] L. A. Baccala and K. Sameshima, “Partial directed coherence: a new
concept in neural structure determination,” Biol. Cybern., vol. 84, no. 6,
pp. 463–474, 2001.

[25] G. Deshpande, K. Sathian, and X. Hu, “Assessing and compensating for
zero-lag correlation effects in time-lagged Granger causality analysis of
fMRI,” Biomed. Eng., IEEE Trans., vol. 57, no. 6, pp. 1446–1456, 2010.

[26] L. Faes and G. Nollo, “Extended causal modeling to assess Partial di-
rected coherence in multiple time series with significant instantaneous
interactions,” Biol. Cybern., pp. 1–14, 2010.

[27] D. A. Pierce and L. D. Haugh, “Causality in temporal systems: Char-
acterization and a survey,” J. Econometr., vol. 5, no. 3, pp. 265–293,
1977.

[28] R. Ashley, C. W. J. Granger, and R. Schmalensee, “Advertising and ag-
gregate consumption: an analysis of causality,” Econometrica: J. Econo-
metric Soc., vol. 48, no. 5, pp. 1149–1167, 1980.

[29] H. Lütkepohl, New Introduction to Multiple Time Series Analysis. New
York: Springer-Verlag, 2005.

[30] A. B. Barrett, L. Barnett, and A. K. Seth, “Multivariate Granger causality
and generalized variance,” Phys. Rev. E, vol. 81, no. 4, p. 41907, 2010.

[31] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Automat. Control,, vol. 19, no. 6, pp. 716–723, 2002.

[32] G. Schwarz, “Estimating the dimension of a model,” Ann. Statist., vol. 6,
no. 2, pp. 461–464, 1978.

[33] E. J. Hannan and B. G. Quinn, “The determination of the order of an
autoregression,” J. R. Statist. Soc. Series B (Methodological), vol. 41,
no. 2, pp. 190–195, 1979.

[34] S. Lemm, B. Blankertz, T. Dickhaus, and K. R. Muller, “Introduction
to machine learning for brain imaging,” NeuroImage, vol. 56, no. 2,
pp. 387–399, 2011.

[35] B. Efron and R. Tibshirani, “Improvements on cross-validation: The. 632+
bootstrap method,” J. Amer. Statist. Assoc., vol. 92, no. 438, pp. 548–560,
1997.

[36] J. F. Geweke, “Measurement of linear dependence and feedback between
multiple time series,” J. Amer. Statist. Assoc., vol. 77, no. 378, pp. 304–
313, 1982.

[37] R. Rajagovindan and M. Ding, “Decomposing neural synchrony: toward
an explanation for near-zero phase-lag in cortical oscillatory networks,”
PLoS One, vol. 3, no. 11, p. 3649, 2008.

[38] H. Hotelling, “Relations between two sets of variates,” Biometrika,
vol. 28, no. 3-4, p. 321, 1936.

[39] J. R. Kettenring, “Canonical analysis of several sets of variables,”
Biometrika, vol. 58, no. 3, p. 433, 1971.

[40] K. E. Muller, “Understanding canonical correlation through the general
linear model and principal components,” Amer. Statistician, vol. 36, no. 4,
pp. 342–354, 1982.

[41] C. W. J. Granger and P. Newbold, “Spurious regressions in economics,”
J. Econometr., vol. 2, no. 2, pp. 111–120, 1974.

[42] N. H. Timm and J. E. Carlson, “Part and bipartial canonical correlation
analysis,” Psychometrika, vol. 41, no. 2, pp. 159–176, 1976.

[43] B. Efron, R. Tibshirani, and R. J. Tibshirani, An Introduction to the Boot-
strap. London, U. K.: Chapman & Hall/CRC, 1993.

[44] Q. S. Sun, S. G. Zeng, Y. Liu, P. A. Heng, and D. S. Xia, “A new method of
feature fusion and its application in image recognition,” Pattern Recognit.,
vol. 38, no. 12, pp. 2437–2448, 2005.

[45] J. F. Geweke, “Measures of conditional linear dependence and feedback
between time series,” J. Amer. Statist. Assoc., vol. 79, no. 388, pp. 907–
915, 1984.

[46] W. Liao, D. Mantini, Z. Zhang, Z. Pan, J. Ding, Q. Gong, Y. Yang, and
H. Chen, “Evaluating the effective connectivity of resting state networks
using conditional Granger causality,” Biol. Cybern., vol. 102, no. 1,
pp. 57–69, 2010.

[47] B. Schelter, Seizure Prediction in Epilepsy: From Basic Mechanisms to
Clinical Applications. New York: VCH Pub., 2008.

[48] C. Wilke, W. Van Drongelen, M. Kohrman, and B. He, “Neocortical
seizure foci localization by means of a directed transfer function method,”
Epilepsia, vol. 51, no. 4, pp. 564–572, 2010.

[49] F. H. Lin, K. Hara, V. Solo, M. Vangel, J. W. Belliveau, S. M. Stufflebeam,
and M. S. Hamalainen, “Dynamic granger–geweke causality modeling
with application to interictal spike propagation,” Human Brain Mapp.,
vol. 30, no. 6, pp. 1877–1886, 2009.

[50] P. J. Franaszczuk and G. K. Bergey, “Application of the directed transfer
function method to mesial and lateral onset temporal lobe seizures,” Brain
Topography, vol. 11, no. 1, pp. 13–21, 1998.

[51] K. Lehnertz, R. G. Andrzejak, J. Arnhold, T. Kreuz, F. Mormann, C.
E. Rieke, G. Widman, and C. Elger, “Its possible use for interictal focus
localization, seizure anticipation, and prevention: Nonlinear EEG analysis
in epilepsy,” J. Clin. Neurophysiol., vol. 18, no. 3, p. 209, 2001.

[52] A. Kraskov, T. Kreuz, R. Q. Quiroga, P. Grassberger, F. Mormann,
K. Lehnertz, and C. E. Elger, “Comparison of two phase synchronization
analysis techniques for interictal focus lateralization in mesial temporal
lobe epilepsy,” Epilepsia, vol. 43, no. 7, p. 48, 2002.

[53] A. V. Medvedev, A. M. Murro, and K. J. Meador, “Abnormal interic-
tal gamma activity may manifest a seizure onset zone in temporal lobe
epilepsy,” Int. J. Neural Syst., vol. 21, no. 2, pp. 103–114, 2011.

[54] W. Liao, Z. Zhang, Z. Pan, D. Mantini, J. Ding, X. Duan, C. Luo,
G. Lu, and H. Chen, “Altered functional connectivity and small-world
in mesial temporal lobe epilepsy,” PLoS One, vol. 5, no. 1, p. e8525,
2010.

[55] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a
practical and powerful approach to multiple testing,” J. R. Statist. Soc.
Series B (Methodological), vol. 57, no. 1, pp. 289–300, 1995.

[56] D. Marinazzo, W. Liao, M. Pellicoro, and S. Stramaglia, “Grouping time
series by pairwise measures of redundancy,” in Phys. Lett. A, 2010.

[57] B. C. Bernhardt, Z. Chen, Y. He, A. C. Evans, and N. Bernasconi, “Graph-
theoretical analysis reveals disrupted small-world organization of cortical
thickness correlation networks in temporal lobe epilepsy,” Cerebral Cor-
tex, vol. 21, pp. 2147–2157, 2011.



3096 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 58, NO. 11, NOVEMBER 2011

[58] J. Alstott, M. Breakspear, P. Hagmann, L. Cammoun, and O. Sporns,
“Modeling the impact of lesions in the human brain,” PLoS Comput.
Biol., vol. 5, no. 6, p. e1000408, 2009.

[59] W. J. Krzanowski, Principles of Multivariate Analysis: A User’S Perspec-
tive. New York: Oxford Univ. Press, 2000.

[60] Y. Chen, S. L. Bressler, and M. Ding, “Frequency decomposition of con-
ditional Granger causality and application to multivariate neural field
potential data,” J. Neurosci. Methods, vol. 150, no. 2, pp. 228–237, 2006.

[61] C. Ladroue, S. Guo, K. Kendrick, J. Feng, and V. Brezina, “Beyond
element-wise interactions: Identifying complex interactions in biological
processes,” PLoS One, vol. 4, no. 9, p. e6899, 2009.

[62] X. Wang, Y. Chen, S. L. Bressler, and M. Ding, “Granger causality between
multiple interdependent neurobiological time series: Blockwise versus
pairwise methods,” Int. J. Neural Syst., vol. 17, no. 2, p. 71, 2007.

[63] E. Florin, J. Gross, J. Pfeifer, G. R. Fink, and L. Timmermann, “The effect
of filtering on Granger causality based multivariate causality measures,”
NeuroImage, vol. 50, no. 2, pp. 577–588, 2010.

[64] X. Wang, Y. Chen, and M. Ding, “Estimating Granger causality after
stimulus onset: A cautionary note,” NeuroImage, vol. 41, no. 3, pp. 767–
776, 2008.

Author’s photographs and biographies not available at the time of publication.


